Environmental Health Perspectives
Vol. 28, pp. 81-88, 1979

Factors Influencing Cadmium
Accumulation and Its Toxicity to Marine

Organisms

by David W. Engel* and Bruce A. Fowlerf

The toxicity of dissolved cadmium to a variety of marine animals has been found to be related to
salinity, with decreased toxicity observed at higher salinities. Recent data from our laboratory have
demonstrated that the toxicity of cadmium to estuarine shrimp and larval fish is a function of free
cadmium ion concentration, which in turn is controlied by the chloride concentration of the water. As the
chloride concentration (i.e., salinity of the water) increases, the concentration of free cadmium ien
decreases relative to total dissolved metal, due to its complexation with chloride ions. These observations
have been given further support by measurements involving the uptake of ''>*Cd by shrimp which showed
that accumulation of '"**Cd and chloride concentration also are inversely related.

Experiments also have been conducted on the physiological effects of cadmium on the respiration of
excised oyster gill tissue. Although tissues from oysters exposed for 14 days to 0.1 ppm total dissolved
cadmium accumulated significant quantities of metal, no measurable effects on respiration rates were
detected. Higher doses (0.3 and 0.6 ppm) caused both mortalities of oysters and accelerated respiration of
excised oyster gill. Exposure to 0.1 ppm cadmium also caused the induction of and/or increased binding of
cadmium to a specific low molecular weight protein in oysters. This protein appeared to have a detoxifica-
tion function at low cadmium exposure levels, but in animals exposed to 0.6 ppm cadmium the induction
mechanism apparently became saturated, allowing the excess cadmium to bind critical sites with resuitant

damage.

Introduction

In recent years, it has become evident that in
order to understand the impact of anthropogenic
additions of trace metals to the aquatic environ-
ment, it is of prime importance to also understand
the chemical and physiological processes which
control the accumulation of these metals by or-
ganisms. Cadmium is of importance because of its
use in various industrial processes and as a by-
product of zinc mining. Both of these types of ac-
tivities have resulted in elevated concentrations
both in saline waters and in marine organisms. In
order to better understand the potential effects of
cadmium on marine organisms, our discussions will
be based on an understanding of the chemistry of
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cadmium in saline media. The discussions will
center upon the chemical speciation of cadmium:
how speciation is related to bioavailability, and
toxicity; and some of the physiological and
biochemical responses of oysters to accumulated
cadmium.

Chemical Speciation

In the past, accumulation and toxicity investiga-
tions on cadmium have been conducted with little
attention to the ¢hemical form of the metal in the
experimental media. This lack of regard for the
chemistry of cadmium may be the source for much
of the variability in the data published on cadmium
toxicity to estuarine and marine organisms (Table
1). Thus, it seems reasonable that before we can
understand the effects of cadmium on marine or-
ganisms, we must understand its chemistry in natu-
ral waters, including the effect of environmental
factors on chemical form,

Recently information has been obtained which
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indicates that the toxicity of copper and cadmium in

water is dependent upon the concentration of the

free metal ion in the medium. Sunda and Guillard (/)
and Anderson and Morel (2} demonstrated that cu-
pric ion activity, rather than the concentration of
total dissolved copper, was the causative agent in
copper toxicity to algae. Similar results concerning
copper toxicity on the freshwater cladoceran,
Daphnia magna, have been published by Andrew,
Biesinger, and Glass (3) and for cadmium and the
grass shrimp, Palaemonetes pugio 4). These ex-
periments used both organic and inorganic ligands
to control the activities of cupric and cadmium ion
in the test media. Thus, it appears that in many
instances trace metal availability and toxicity is a
function of free metal ion whose concentration may
be significantly less than the total dissolved metal
concentrations, depending upon the level of com-
plexation.

The chemisty of cadmium was investigated in
different dilutions of seawater to gain a better un-
derstanding of the relationship between cadmium
availability (free ion versus total dissolved metal)
and toxicity (¢), The measurements of cadmium ion
concentrations were made at constant dissolved
metal concentrations with a cadmium ion-selective
electrode. The data showed that free cadmium ion
varied inversely with salinity due to complexation
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FiGgure 1. Logarithm of the fraction of total cadmium present as
free cadmium ion as a function of salinity. [Cd**] refers to
free cadmium ion concentration and Cd; to total dissolved
cadmium. Figure from Sunda, Engel, and Thuotte (4).
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by chloride 1on (Fig. 1). Also, inorganic chemical
speciation models based on equilibrium calculations
predict that cadmium is primarily present as
chloride complexes in seawater (5). Recently,
Mantoura, Dickson, and Riley (6) published com-
puted models for the complexation of trace metals
by inorganic ions and humic type materials in natu-
ral waters. Their calculations support our observa-
tions on the complexation of cadmium by chloride
in sea water dilutions. They found that humates
complexed only slightly with cadmium, even under
the most favorable conditions and that chloride
complexes dominated the cadmium spectation in
estuarine waters at salinities above 20 %, . Thus, in
any toxicological, biochemical, or physicological
procedure where cadmium is used, the chemical
composition of the medium must be known before
the true toxicity of cadmium can be evaluated.

Toxicity of Cadmium

Data on the toxicity of cadmium to aquatic or-
ganisms indicates that freshwater organisms are
more sensitive to cadmium than are marine or-
ganisms (7, 8) and that the relationship between
toxicity and salinity is inverse, i.e. as the salinity
increases the toxicity of cadmium decreases ¢,
9-11). These results may be explained by the model
discussed earlier if the toxicity of cadmium, as with
copper, is dependent upon the concentration of free
ion in the water. To test this hypothesis, a series of
experiments was conducted to examine cadmium
toxicity as a function of free cadmium ion ).

In these experiments the grass shrimp, Palacmo-
netes pugico, was chosen as the test organism. The
shrimp were exposed for four days to a range of
salinities of from 5 to 30%; and a range of total
cadmium concentrations of from 1.1 x 1075 t0 5.9 x
1075M. Measurements of free cadmium ion con-
centration were made directly in the experimental
media using a cadmium ion-selective electrode.

Examination of the four-day survival data for the
grass shrimp showed that as the salinity decreases
there is a corresponding decrease in survival at all
levels of cadmium used (Fig. 2). Similar results have
been interpreted in terms of the interaction between
cadmium and damage to a salinity-dependent
physiological function, such as osmoregulation (/).
However, when the data are correlated with cad-
mium ion concentration and salinity (p[Cd2+],
{—log of the cadmium ion concentration rather than
total dissolved metal) a striking relation between
free ion concentration and survival emerges (Fig.
3). Thus, the observed salinity effect on cadmium
toxicity to grass shrimp can be explained entirely in
terms of the free cadmium ion as it is affected by
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FiGuRe 2. Three-dimensional plot of survival of grass shrimp,
Palacmonetes pugio, exposed to four different salinities and
five different cadmium concentrations for 96 hr.

chloride complexation. In order to demonstrate that
free cadmium ion and not salinity was the major
independent variable, the cadmium ion concentra-
tion was varied independent of salinity (3 %,) using
different concentrations of cadmium and a chelator
NTA (nitrilotriacetic acid). Again, survival was re-
lated to free cadmium ion, p[Cd?**] (Fig. 3). The
close replication of the relationship between survi-
val and p[Cd®*] in the two separate experiments
demonstrated that the free cadmium ion was the
toxic chemical form. The rapid decrease in survival
over narrow p[Cd**] range indicates a rather sharp
endpoint for the titration of cadmium onto biologi-
cally sensitive sites. From these data it seems rea-
sonable to predict that in the marine environment
for a given concentration of cadmium it should be
most toxic to organisms living in the upper portions
of estuaries where the salinities are the lowest.

A comparison of published cadmium toxicity data
(4, 15), recalculated in terms of p[Cd?*], with esti-
mated concentrations of free cadmium in seawater
(p[Cd2*] = 10.5), suggest that cadmium is not en-
vironmentally significant from the acute toxicity
standpoint (Table 1). All of the calculated values for
these data are four to five orders of magnitude lower
than the p[Cd?*] calculated for the environment.
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FiGure 3. Plot of the four-day survival of grass shrimp, P. pugio
as a function of p[Cd?**] (- log of free Cd** concentration).
The data for both the salinity and NTA {nitrilotriacetic acid)
were replotted from Sunda, Engel, and Thuotte ().

However, most toxicity determinations were made
on adults and therefore did not necessarily test the
most sensitive life stages of organisms.

For chronic or protracted exposures, generaliza-
tions concerning toxic effects of cadmium in the
environment should not be made. The primary diffi-
culty is that there are not sufficient data from
long-term experiments to either refute or support
any general statements concerning biological im-
pacts. An apparent exception is the work of Nimmo
et al. (/6), who showed that by using the life-cycle
bioassay technique and the mysid shrimp,
Mysidopsis bahia, it was possible to demonstrate
significant effects at cadmium concentrations of
10.6 pg/l. at about 20 %, salinity in a 17 day life-cycle
test. They also demonstrated changes in the breed-
ing cycle and reductions numbers of young re-
leased. The calcutated p[Cd?*] for these results is
8.2, which is much closer to the calculated en-
vironmental value. Through the use of either long-
term exposure or life-cycle bioassays a more valid
estimation of cadmium toxicity in the marine envi-
ronment may be made.

Accumulation

Cadmium is actively accumulated by marine or-
ganisms, particularly by mollusks (/7-20), and some
species of mollusks can accumulate large quantities
of metals from contaminated environments with no
apparent damage. Two examples are Mytilus edulis,
which accumulated up to 60 ppm of cadmium 2/)
and the Pacific oyster, Crassostrea gigas, which
has been shown to accumulate cadmium up to 120
ppm on a dry weight basis (22). In laboratory inves-
tigations the American oyster, Crassostrea vir-
ginica, has been shown to be capable of concen-
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Table 1. Calculated p[Cd**] values from cadmiuvm LC;, for selected marine organisms.”

Crganism Salinity, %, Time, hr LCy, ppm Cd p[Cd**] Reference

Sand shrimp

Crangon septemspinoso 20 96 0.32 6.71 &)

Grass shrimp

Palaemonetes vulgaris 20 96 0.42 6.60 @&

Grass shrimp

Palaemonetes pugio 15 96 0 6.36 )

Soft-shell clam

Mya arenaria 20 96 2.2 5.88 &)

Blue mussel

Mytilus edulis 20 96 25.0 4,82 @)

Sand worm

Nereis virens 20 96 11.0 5.18 8)

Mummichog

Fundulus heteroclitus 20 55.0 4.48 &)

Sheepshead minnow

Cyprinodon variegatus 20 96 50.0 4.52 &)

Mummichog (larvae)

F. heteroclitus 30 48 2378 5.1-5.5 2

Silverside (larvae)

Menidia menidia 30 96 0.6 6.65 4

Qyster (embryo}

Crassostrea virginica 25 48 38 5.7 13

Bay scallop

Argopecten irradians 25 96 1.48 6.13 (/4)
« Calculated by equation of Sunda et al. (#): — log[Cd?*] = — log [Cdspa] — log [CA+/Clga],

* D. W. Engel, unpublished data.

trating high levels of cadmium (/7, /9), and whole
body concentrations about 100 ppm wet weight
were fatal 271).

To gain further insight into the effect of salinity
on cadmium availability, experiments were con-
ducted with "»"Cd to test the effect of salinity on
rates of cadmium accumulation. The organism used
in these experiments was the grass shrimp,
Palaemonetes pugio, which were exposed to ''5"Cd
for four days in water of 5, 10, 20, and 30 %, . The
uptake by the shrimp was inversely related to salin-
ity (Fig. 4). The pattern follows the model of free
ion concentration shown in Figure 1; i.e., at con-
stant total cadmium, as the salinity increases the
concentration of free cadmium ion decreased. Even
though the time period allowed for uptake of '***Cd
from the water was short, it was equivalent to the
period previously used for the toxicity tests 4).

Preliminary investigations with the accumulation
of cadmium by the oyster, have shown that it was
necessary to allow exposed oysters 24 hr in flowing
seawater to clear the mantle cavity and gut before
metal concentrations were measured. This period of
flushing allowed the oyster to depurate cadmium
which was not biologically incorporated. Qualita-
tive information on the distribution of cadmium on
the mantle has been obtained from oysters exposed
10 0.1 ppm cadmium for 14 days and then flushed for
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FIGURE 4. Accumulation of 1'5"Cd by grass shrimp, P. pugio, asa
function of time of exposure and salinity: (——) 5 ¢, ; (- -)
10 %o 3 (— =) 20 %, . (-~} 30 ¢, . The vertical bars represent + SE
for n=5.

24 hr in clean water. By scanning freeze-dried man-
tle tissue with a PIXEA (proton-induced x-ray
emission analysis) unit, the concentrations of cad-
mium on the surface of the tissue were shown to
increase as the scan moved toward the mouth from
the outer edge (Fig. 5}. This observation indicated
that cadmium was probably adsorbed by the mucus
coat on the gills and the mantle and then was moved
toward the mouth by ciliary action. If the oysters
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FiGure 5. Proton-induced x-ray emission analysis (PIXEA),
microscan of a mantle from an oyster exposed to 0.1 ppm
cadmium in seawater for 14 days.

are not allowed to clear in flowing water, large
quantities of unbound cadmium would be included
in tissue samples, which would resalt in unrealisti-
cally high accumulation values and increased varia-
bility.

In another series of experiments, juvenile oys-
ters, Crassostrea virginica, were exposed to ' (Cd
at three salinities, 10, 20, and 30 ¢, for 7 days. In
these accumulation experiments, the oysters were
removed from the radioactive water at predetet-
mined intervals and placed in nonradioactive water
for 24 hr. The flushing period was used to allow the
oysters time to clear the unassimilated ' Cd that
was in the gut and adsorbed to external surfaces and
mucus. The remaining " Cd is most probably **in-
corporated”’ rather than nonspecifically adsorbing
to surfaces. The animals were then killed and pre-
pared for liquid scintillation counting. The soft parts
were placed in vials, dried, weighed and digested
with concentrated HNQ,. After the samples were
taken to dryness they were covered with 10 ml of a
standard toluene base cocktail and counted in a
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FIGURE 6. Accumulation of ***Cd by juvenile American oysters,
Crassostrea virginica, as a function of time of exposure and
sajinity of the water. The numbers in parentheses refer to the
number of individuals per point = SE. Juvenile oysters
supplied by Frank M. Flowers and Sons, Inc., Bayville,
N. Y.

scintillation counter. This technique gave repro-
ducible counting geometry.

The uptake of the "> Cd by the oysters as a func-
tion of salinity follows a similar pattern, as was ob-
served for the grass shrimp (Fig. 6). A major differ-
ence is that the exposure period was continued for a
long enough time, 7 days, so that maximum uptake
occurred at a salinity of 10 9%, . The mortality of
oysters at 10 %, probably was caused by the toxic
effect of cadmium, because the total cadmium con-
centration was ~ 1.0 ppm in each exposure tank.
This concentration of stable cadmium was the result
of cadmium **carrier’’ in the isotope stock, rather
than from an added spike of cadmium. While this
level is not toxic at 20 or 30%,, it apparently was at
10 %. due to the greater availability of free cadmium
ion.

Both of the experiments help explain the en-
vironmental observation that organisms collected
along a salinity gradient down an estuary toward the
ocean have decreased levels of cadmium as the sa-
linity increased (/8, 22}. Such observations fit the
model of increased cadmium availability with de-
creased salinity. All of the accumulation data which
have been collected thus far have involved only
uptake from the water, but other patterns could de-
velop if the primary source of the metal was from
food. This is an area which should receive extensive
research in the future.

Physiological Effects

Effects of cadmium on the physiological balance
of marine organisms have been demonstrated by
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numerous investigators (/7, 24-27). However, the
following discussion will be confined to the mol-
lusks, more particularly to results of our investiga-
tions with the American oyster, Crassostrea vir-
ginica.

The oysters used in these investigations were ex-
posed to cadmium in a flowing water exposure sys-
tem for 14 days (/7). The concentrations of cad-
mium which were used were 0.1, 0.3, and 0.6 ppm
cadmium in 3.0-3.4% seawater, which corresponds
to p[Cd**] levels of from 7.4 to 6.7. Measurements
of oxygen consumption rates were made on excised
gill section using a differential respirometer. Mea-
surements of total cadmium were made on the same
tissue sections as used for respiration determina-
tions. The tissues were wet ashed in concentrated
HNO,; and analyzed by atomic absorption spec-
trophotometry.

The rate of accumulation of cadmium by the gills

cd CONCENTRATION {wg/mg dry wt

DAYS EXPOSURE

FIGURE 7. Accumulation of cadmium by oyster gill tissue as a
function of duration of exposure (14 days) and cadmium con-
centration (0.1, 0.3, and 0.6 ppm). The vertical bars show *
SEandn=10at 0.1 and 0.6 ppm and n=5 at 0.3 ppm. Data for
0.1 and 0.6 ppm from Engel and Fowler (I7).

A
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FIGURE 8. Normalized respiration rates of excised oyster gill
tissue to cadmium concentrations of (&) 0.1, (0) 0.3, and (@)
0.6 ppm (/7).
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of exposed oysters was both concentration- and
time-dependent (Fig. 7). Cadmium uptake by the gill
tissue was found to level off at about 11 days in the
oysters ¢xposed to 0.6 and 0.3 ppm cadmium. Ac-
cumulation of cadmium at 0.1 ppm was virtually
linear through day 14, and there were significant
differences between the rates of uptake of cadmium
at 0.6 and 0.3 ppm and 0.1 ppm. Also, there were
mortalities among the oysters exposed to either 0.3
and 0.6 ppm cadmium by day 14, but no mortalities
occurred among those exposed to 0.1 ppm cadmium
or the controls.

Oxygen consumption of oyster gill tissue was af-
fected by the accumulated cadmium after about 7
days, when the animals were stressed (Fig. 8).
These data have been recalculated (/7) for the pur-
pose of showing the possible relationship between
oxygen consumption and the accumulated metal.
Since all of these measurements were not done at
the same time, it is difficult to make any hard com-
parisons, but from the experiments at 0.3 and 0.6
ppm cadmium there appears to be an upper cad-
mium tissue concentration above which the animal
can not metabolically control. Such speculation is
supported by Shuster and Pringle 23), who demon-
strated that at body burden of about 100 ppm cad-
mium wet weight of oysters were killed, and that the
maximum concentration in the oyster was indepen-
dent of dose rate. Thus, apparently the detoxifica-
tion system for cadmium in oysters must have some

eDay 0
ODay § } 0. ppm
| ODayl4

12k aDay ¥ ~0.6 ppm

ppm Cd

20 49 &0 BO 100 120
. Fraction no,

FIGURE 9. G-75 Sephadex elution profile from oysters exposed to
0.1 ppm cadmium for {0) 5 and {O) 14 days, and (A) from
oysters exposed to 0.6 ppm for 7 days, relative to (@) con-
trols. Curves show association of cadmium with low molecu-
lar weight proteins (0.1 ppm) and with high molecular weight
proteins (0.6 ppm). Techniques used for isolation and
characterization of the cadmium-binding protein are given in
Ridlington and Fowler (37).
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point of saturation.

The capacity of marine organisms to detoxify
materials which have been accumulated should be
of selective advantage. Ridlington and Fowler 28)
have already demonstrated the oyster posseses a pos-
sible detoxification system for cadmium in the form
of a low molecular weight metal-binding protein.
Cadmium binding proteins have been isolated from
other marine organisms, primarily fish and seals
(29, 30). The oyster cadmium-selective protein has a
molecular weight of about 7400 and has high con-
centrations of dicarboxylic amino acids relative to
cysteine {3/). Therefore, the chelation of the cad-
mium may be through the carboxyl groups rather
than the sulfhydrals as in vertebrate metallothio-
neins. Further examinations of the oyster protein
indicate that there is an upper limit beyond which
the oyster cannot sequester and thereby detoxify
the accumulated cadmium (Fig. 9). This phenome-
non can be explained by the spill-over of cadmium
into the higher molecular weight fraction in oysters
exposed to 0.6 ppm cadmium for 7 days. Such an
ill-defined pattern indicates that all the available
protein has combined with cadmium, and that addi-
tional metal will complex with sensitive sites on
membranes or enzyme molecules. Whether the
cadmium selective protein is produced de nove, or
whether the protein is simply activated by the pres-
ence of the metal is unknown. The first option is the
more attractive but it is very difficult to prove, due
to technical problems in measuring protein syn-
thesis in a bivalve mollusk. However, from a evolu-
tionary standpoint, an inducible gene to produce a
detoxifying protein would be of selective advan-
tage. Further investigations are currently in prog-
ress to examine other factors which may influence
the uptake and toxicity of cadmium in the marine
environment.
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